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It is suggested that the Gell-Mann Low function vanishes for a fixed (large) value of the unrenormalized

coupling constant,

Recently the question whether scale invari-
ance can be regarded as a good asymptotic
symmetry has received considerable attention in
literature [1-8]. In various field theoretic models
and in perturbation theory anomalous dimensions
[1] and intrinsic breaking of scale invariance
were reported [1-5]. In particular, it was re-
marked that also in quantum electrodynamics
(QED) scale invariance appears to be intrinsic-
ally broken [2], at least in perturbation theory.
Therefore, the concept of dimension, even for
currents, seems to be lost.

On the other hand, the MIT-SLAC electro-
production experiments [9], which gave the initial
impetus to the study of scale symmetry, provide
no support for any anomalous behaviour of the
electromagnetic current [10,11].

Since there seems to be some indication [9]
that perturbation theory does not describe the
experimental situation satisfactorily one can ask
oneself whether a non-perturbative approach to .
QED leads to a better situation. Now the only
non-perturbative method available is the renor-
malization group [12] approach. Recently con-
siderable progress [13] has been made in this
field of research. In particular Jouvet and Astaud
[13] have clearly stated the necessary conditions
which have to be fulfilled that the Gell-Mann Low
[14] function ¥(a,) vanishes for a fixed value of
the unrenormalized coupling constant a,. Due to
the work of Callan [2], Symanzik [3] and others
¥(aflx) = 0 in turn implies that scale invariance
is a good asymptotic symmetry of the theory.

In this communication we present a summary
of ogr recent investigations which suggest that
\P(aoi") indeed vanishes in QED. The details of
our investigations are deferred to an extended
publication.

The results are as follows:

Although due to Adler anomalies in the trace
of the energy-momentum tensor the dimensions
dp,, and dj  of the electromagnetic field and
cux“rent refpectlvely are anomalous in lowest
order

dy =1+a/3n
= p (1)
di =3 3
"H- + a/onm

(a=€2/4n, e is the renormalized coupling con-
stant) and undefined in higher orders of pertur-
bation theory, a global solution of QED has the
property that dp u and diu have canonical dimen-
sions.

This result follows from the fact that the Gell-
Mann Low function vanishes for a fixed value of
@0

ﬁ(a°=ag") =0 (2)

and therefore the term which is responsible for
the intrinsic breaking of scale invariance drops
out in the Callan-Symanzik [2,3] equations and
scale invariance becomes a good asymptotic sym-
metry in QED. Eq. (2) is implied by a positive
energy spectrum and by a bootstrap condition*
for the Feinstructure constant

ZZ (a) =0 (3)

which in turn leads to the result that physical
masses are totally of dynamical origin. The
bootstrap condition S?zq (3)) together with an ex-
plicit estimate of aflX (see below) and the condi-
tion afiX>a sugges?that aflX can be associated
with a strong interaction coupling constant and
that the solutions of the field equations for QED
include those of a strong interaction theory. This

* The bootstrap condition was already proposed In ref,
(15].
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would mean that pure QED is valid only below a
certain cutoff momentum.

Contrary to the canonical dimensions of the
electromagnetic current and field, which essen-
tially follow from gauge invariance and a finite
Z3, the dimension of the fermion field is expect-
ed to be anomalous due to eq. (3). This means
that the interacting theory is more singular than
the free theory or in other words that strict lo-
cality is lost because the fermion shows some
structure. Furthermore we propose now that the
deviations from the canonical dimension of the
fermion field at very high energies are a meas-
ure of higher [16] spin contributions. This inter-
pretation is not altogether implausible because
a connection between integer "spin" s and dimen-
sion d was noted before by Mack [16] and others,
namely

d=s+2

Let us now sketch the derivation of our results *
To facilitate a better understanding we summa--
rize first the necessary conditions for the vanish-
ing of ¥(a,)

Define the renormalized gauge invariant pho-
ton propagator function dg (2, a) by

Dg(k2) = - 1/k2 dp(k2, a) 4)
then using -
a=ayZ3, Dg= Z§1D° (5)

where D, is the unrenormalized photon propa-
gator, one easily establishes the functional equa-
tion of the renormalization group. From the dif-
ferential equation one gets the following exact in-
tegral representation for dp(k2/M2, a), (M is the
physical mass of the fermion)

K2/ M2
dpk?/M,@)=1-a [ &

0

where H(a, ) i8 unknown. The more familiar re-
presentation of dg(k2/M2, a) in terms of ¥(g) is
obtained by taking M or M, (bare fermion mass)
equal to zero

dﬁ'ho(kz/ M2, a)

k2/M2 @ (7)

=1- dol 2 -
=1-a g t‘p(’dn(t,a))’M 0

H(a, o/dg(t,a)©)

and

* We closely follow here the work of Astaud and Jouvet
[13).
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Q‘ (#2/M2, @
/é"/M2 ®

=1-a [ —w(’ dR(I,a)) butM# 0

It is the latter representation eq. (8) which will
be lnterestingotor us in the following. Before dis-
cussing d further we would like to restrict
the genergl unknown function H(a, g) by imposing
the following physical desirable conditions to
have a connection with QED:

1. Regularity of d, at k2 = 0, i.e. H(a, ) has
an expansion around dl‘ a, such that H(a, a) =

o3 Hla, B)/3B|q=p = -1.

2. Unitary osltivity) requirement for (éR
which restricts [17,18] Z3 = llm dR(k 2/M2, q)
in the well known way to
0<23<1 (9)

and leads to H(a, B)> 0 for 0 < B < @, with
H(a,Bqo=a | Z3) =

3. The existence of a lowest bound state in
dp, namely the positronium, which implies the
following form of H(a, g) near the pole:

H(a, B) jg—0 — -4/B2a? (10)
There is then no contradiction with the renorma-
lization group to have a unique solution

ay = agla) of H(a,ag) =0, a,>a (11)
whereby a, is such that

3(ay (a))oa >0 (12)

which 18 the basic [19] content of the renormali-
zation group 1.
Now we are in the position of discussing eq.
(8) further Making the change of variables
t=t'/mM2 4, which leads to 13)
My @ )
t" ap'/mM3,a)

k2
Mo=0 dat
dg’  (k2%/M%,a) =1-a {7-‘

and then letting M, — 0 and using a/dg(®,a) =a,,
we obtain

T wilson [20] has a slightly different interpretation of
the physical content of the renormalization group,
namely that o s independent of @. However, this
invalidates Dyson's way of renormalization. Only in
exceptional cases such a situation is expected to pre-
vall, Furthermore, on our discussion we do not put
M equal to zero.
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k2,
o™ 2/M2a) = 1-v0,a e [ ':‘—, (14)
0

where ¥(0, ) = ¥(ag). Since the integral eq.
(14) diverges which would be in contradiction to
eq. (9), we conclude that ¥(a o) has to vanish for
a,=aqy". There 18 then no contradiction to hav-
ing a, ﬂxed since a is also fixed by

Mo(a Mo=°) . (1 5)

in conformity with eq. (12). Furthermore, we
observe that because of eq. (10) H(aps <0, 8) has
no Taylor expansion but only a limited but only

a limited Laurent expansion around a, = 0. In
other words, the usual perturbation expension

is an invalid expansion, and must lead to troubles
as first remarked by Dyson [21].

Having now stated the necessary conditions
for the vanishing of ¥(ay) we are still left to
show that M, actually vanishes in QED. In a pre-
vious communication strong arguments for the
fou]owing relation between M and M, were given
(15

My =Mz, (16)

where Zg is the wave function renormalization
constant of the fermion. This relation was de-
rived in the Fried-Yennie gauge and agrees ex-
actly in lowest order with the result obtained in
the Coulomb gauge both evaluated in the same
Lorentz frame (restframe of the particle).
Furthermore eq. (16) holds also in Schwinger's
covariant radiation gauge [22] not only in lowest
order but also in general * using a result of
Jackiw and Soloviev [23]. Since eq. (16) holds in
different gauges, it must be a gauge independent
result. This is confirmed by a recent work of
Haller and Landovitz [24] , who have shown that
Zg can be defined in a gauge independent way if
the subsidiary condition (Lorentz condition) is
properly taken into account for interacting pho-
tons and electrons. Specifically they were able
to show that Z,, when calculated in one of the
usual covariant gauges but with interacting sub-
sidiary condition as a constraint, reduces exact-
ly to the expression obtained in the radiation
gauge, which is independent of these modofica-
tions because it works only with the physical
transverse photon states. Since eq. (16) holds
in the radiation gauge, we conclude therefore
that it holds in all gauges.

* In this context we want to stress the fact that the as~
sumption of positive energy spectrum is essential for
the validity of eq. (16) in QED,
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But now it is not difficult any more to show
that M, vanishes. Killén [25] has given a proof
that Zs vanishes in QED. This result has been
obtained in a special gauge, however one can
show that it holds in all gauges and the argument
goes as follows [26-28]:

Ki4llén's formulation of QED is based on one
of the true [27] gauges where the asymptotic con-
dition can be formulated for the electromagnetic
field. Furthermore the renormalized fermion
field Y(x), from which Z, is defined through the
equal time anticommutator

{W(x), W (y)}xo

is related to the fermion field yT(x) in the true
transverse gauge by an operator gauge transfor-
mation.

=231 ¥06% (x-y) )

V(%) = exp (leA(x)) ¥T(x)
where (18)
AG) = (32713, AKW)

A(x) represents the longitudinal components of
Ay(x), 1.e. 3 A (x) = A'?(x) Since Y1 (x) com-
mutes (28, 27i‘ with A (x) - ¢T (x) depends only on
the transverse components of A (x), all the un-
physical photon contributions are projected out

by the Lorentz condition - we obtain

{¥ @), POB xymyo = (VT (), ¥
and therefore
z31 = (z3)T (19)

If we therefore accept that Z, vanishes in all
gauges, then M, also vanishes due to eq. (16) and
the necessary conditions for the vanishing of

¥ (@) seem to be fulfilled. At this point we have
to be somewhat careful, however, because
K#llén interpreted his result in that way that
QED for itself cannot be fully consistent or in
other words that Z, is trivially zero [29]. To
avoid this somewhat negative conclusion, which
is not at all confirmed by experiment [30], we
assume that the theory is cut off in some way -
for example by gravitation [31], as suggested a
long time ago by Weisskopf - and interpret then
Killén's result as an eigenvalue equation for a
in terms of this cutoff. Now we can come back
to an estimate of afolx, using Padé summation
methods [32]:

agk/zn ~1.111

or
dgx ~ (20)

(y)}xo—J?o
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which is just one half of the value of the usual
pion-nucleon coupling constant. This interpre-
tation suggests itself due to the following facts:
Since the photon has two degrees of freedom as
compared to one of a single pion the factor one
half i{s intriguing. This factor one half is also
borne out in 2 comparison of a perturbation theo-
retic calculation of the spectral function of the
fermion propagator in QED and pseudoscalar
pion-nucleon theory with massless pion, respect-
ively. This therefore strongly suggests that afix

is a strong interaction coupling constant. Further-

more it was already suggested before [33] that
the field equations for QED may also have 2
strong coupling solution, the conservation of
baryonic charge being then nothing else than an
aspect of gauge invariance. As a final support of
our argumentation - which is based mainly on the
nonperturbative method of the renormalization
group - we would like to mention the remarkable
mass formula of Nambu [34], which relates the
masses of all particles to the mass of the elec-
tron and the finestructure constant. This opens
the possibility that all interactions are related
to the electromagnetic interaction and ultimately
to the gravitational interaction.
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thorough discussions and very helpful criticism.
Furthermore, useful discussions with P.
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Mack, H.Reeh and especially W. Smilga are
gratefully acknowledged. The author is grateful
to Professor Diirr and Professor Thirring for
their kind hospitality extended to him at the
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