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Summary. — We examine the cross-sections for meson electroproduction
in two model field theories. We find that for the interaction of neutral
scalar mesons with nucleons the structure functions exhibit scaling in
the generalized Bjorken limit, but that for the case of the charge-inde-
pendent pscudoscalar-meson-nucleon interaction scaling does not always
occur. We comment on the origin of this breakdown and on its signi-
ficance for parton models of deeply inelastic electron-hadron scattering.

1. — Introduction.

The recent suggestion of BJORKEN (!) that the cross-section for inelastic
electron-hadron scattering processes in which only the final electron is observed
should depend only on dimensionless ratios of the kinematic invariants of the
scattering process has been reasonably successful in describing the data available
for such processes (*). This success has led several authors (3¢) to speculate that
gimilar behaviour, generally termed «scaling», should also occur for «semi-
inclusive » processes, i.e. those in which both the final electron and a single
final-state hadron are detected. Our purpose in this note is to examine whether
or not such a hypothesis is supported by detailed calculations based on field

(*) Research supported by A.R.0.(D) and N.S.F.

() J. D. BJorkEN: Phys. Rev., 179, 1547 (1969).

(?) J. D. BjorgkeN and E. A. PascHos: Phys. Rev., 185, 1975 (1969).

(3) R.F. KiOGERLER and R. M. MURADYAN: Dubna preprint E2-4791 (unpublished).
(4) S. D. DrerL and TuNG-Mow YAN: Phys. Rev. Lett., 24, 855 (1970).

295




296 P. L. F. HABERLER, N. R. LIPSHUTZ and 0. L. WEAVER

theory in lowest-order perturbation approximation. While conclusions based
on such a simple model cannot be regarded as definitive, they do suggest that
a careful re-examination of the bases for this hypothesis is in order.

2. — Kinematic analysis of the semi-inclusive cross-section.

The general process which we wish to examine is shown in Fig. 1 a), and
it is easy to show that the differential cross-section for the process can be written
in the form

a) d 1 et 1 ax%' asp’

O Vpk— 2 ¢ @n) 2k 2p] T

Fig. 1. — Kinematics for electroproduction of a meson of momentum p’ from a proton:
a) general case; b) case in which the unobserved hadron state consists of a single
nucleon.

where M is the mass of the target, M, is the electron mass,

@) Tur = % Tr {Yu((y B+ M)y, (1) + 1) BF 7;(7'8'))}
and
®3) u = 2, (27)4 0 (D + g — p'— p ) <DIJ Ip'p > <"}, |p>

with J, the hadronic electromagnetic current.
The requirements of gauge invariance and parity invariance guarantee that
the hadronic current tensor g,, can be written in the form

(4) Qur = (_ [/ +qu’Q3) -

‘01 + PP, + P, :93+(P;IP;+PvP;t)Ql+(PpP;—PvPl")9"
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where, following KOGERLER and MURADYAN (%), we have defined

(ﬁa) Pr = pH— p._q.g q*,
(5b) Pw = pu'—p—q}’ .

3. — Structure functions for meson electroproduction.

We shall now compute the structure functions g, @:, €3, 0, and p, for the
special case in which the observed hadron p’ is a meson and the unobserved
hadron p, is a single nucleon as indicated in Fig. 1 b). We consider the cases
in which:

a) The observed meson is a neutral scalar meson ¢ of mass m interacting
with the nucleons through the Hamiltonian

(6) H_ = g,pyo .

The lowest-order Feynman diagrams which contribute to this process are
presented in Fig. 2 a).

c!

Fig. 2. — Lowest-order Feynman diagrams for the process of Fig. 1b) for a) o produc-
tion; b) =° production; «) r¥ production.

b) The observed meson is u pion ¢ of mass m interacting with the nucleons
through the Hamiltonian

(7) H_=igpy,ty .
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The lowest-order diagrams contributing for the case of a neutral pion are shown
in Fig. 2 b), and those which contribute for the case of a positively charged
pion are shown in Fig. 2 ¢).

Straightforward calculation yields the following expressions for the structure

functions:
1) o case:
_ ingdp" @20 p'(@ + 20 Q) —2mp-g—4MGC 5 e apny
B8 = (¢*+ 2p-q)*(m*—2p"-p)* (tp+e )
167g3(p’-q)*(m* — 4 M*) '
b g = 7 — 2__ M3 '
a i@+ 2p-0pmi—2p py (& T LTV A)
(8) o5 = dngil(4M*—2p -p')(g* + 2p-q) —2p -g(m*—2p-p")]
(¢*+ 2p-q)(m*—2p ') ,
“8((p + 9 —2' ) — M),
87g3(¢-p")(m* — 4 M?)
8d = é —p')—M?),
(8¢) ps=0.
2) ° cage:
, _ dng*(p'q)*[2p P (0P + ') —mp'P + PD] 500, 4 q-p'):— M),
B9 = (@ + 2p0)¥(mi —2p ') (2 )
_ —16mg*m*(p’-q)* e — M?
@) a= (g* + 2p-q)%(m*—2p p’)* 3@ +g—2) )
_ —4ng*2¢’p-p'+ 2m¥(p-q)] i M3
®) o= —m rap-gm—2p-py (@ FITP) i
8rg*m*(p’-q) 3
= é —p)r— M?),
(9e) 0s=0.
3) =t case:
(100) o= Se4p'Pr'p + 2’0 —2mip p't p W 5((p + g— 2 —27)

i 2(q* + 2pq)*

(106) o, = —_w’_‘-‘.”’_m_;; 8((p + g—p')*— M?)

(10¢)

(10d)

(¢*+2p-¢
o Mgz[4qa(qz_2p’4) + 4m.(q, + 2? Q)] k) + q__pl):__ M:)
2= @+ 2p -q)(*—2p'q)? ((» ’

_ -—47!g3(4.M’.__2q’) 8((p + g— "—-M’),
= =20l + 200 ((p+a—=2)

(106) 0, =0.
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The structure functions g, depend on the invariants

11) @=—g, v=upg, n=p-g, x=p"p
and have the dimensions
(0] = mass™?,
(12)
[o,] = mass—, a=2,..,95.

If invariance under the scale transformations

q¢—~>Ag ,
(13) p-2p,
| p'—>2p,
is to hold, it is necessary that the structure functions satisfy the equations (*)
(14a) A2(22Q% A%p-g, 2*p"-q, AP P)=0(@* "¢, P’ 0, P'*D)
(14b) 249, (A*Q% A2p-g, A*p'-q, *p"-P)=0.(Q% D¢, D' ¢, P"'D), a=2,...,5.

We now pass to the generalized Bjorken limit

vy @ —w;, x =00,
(15) g =— = fized , A fixed s
1
define
(16a) 0= g;,
(16d) o= ?,

and observe that the scaling requirements of eqs. (14) are met in this limit if
and only if

(17a) iy, ve, = F\ (0, @) )
(17b) G!é.na). -p29° = Fa,(wy tZ) ) a = 21 saey 5 ’

with all the F; dimensionless functions of w and «. We now evaluate the left-

(%) V. A, MarveEev, R. M. MuraDYAN and A. N. TAVKHELIDZE: Dubna preprint
E2-4698.
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hand side of eqs. (17) using the structure functions we have already calculated.
We find for both the n° and ¢ cases that

. 2 1
(182) Jim, ve =T (1 —0)(1 + ow)) ==,
(180) Jim, 0, = 7g'8{(1 — 0)(1 + aw) =2,
(18¢) Jim, »0,=0, k=2,4,5,

while for =t (%) that

2 2
(19a) GEF%I. e, =2=g* ww— 1 i ((1 —o)(1 + aw)— %—;) ,
(196)  lim, 0. =0, k=25,
2
(9 Jim, v, = —8ag* (1) wlot— 2013 ((1— )1 + 20) )

(194) lim %, = —4ng? (7%) wd ((1 — o)1 + aw)— ﬂz) .

Gen. BJ. Q2

Thus, we see that while all the structure functions for ¢ and n° production
manifest the scaling behavior described in eqs. (17), the structure functions
os and g, for =+ production do not.

At this point, the objection might be raised that this loss of scaling behavior
is due to a particularly injudicious choice of structure functions (?). In order
to eliminate this possibility, we have also examined the generalized Bjorken
limit of the structure functions for meson electroproduction defined in a manner
completely at variance with eq. (4).

Following KOGERLER and MURADYAN (3), we define the polarization vectors

(20a) g’ =(—Py)tP,,

P2 ¥ P-P
(20b) 8;‘4") — (-(-5—’)——‘—")2_ PzP") (P"‘— —PT P“) ’
(20¢) & = (g (p-p')* — M*m*]) ez p"p 00,

(®) The factor m?/Q? is retained in the delta-functions in eq. (20), so that the large Q*
dependence of F; may be computed.

() The structure functions g;,, t=1,...,8, arc particularly conveniont because they
are free from kincmatical singularities.
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which satisfy the conditions

(21a) €9, =0, «a=L1T,.1T,,
(210) 2 G =—g,+ a0/

a=L,T,,Ty

It then follows that g, can be written in the form

(l‘)(!’) (1’)(2‘ (L) (L) (1) D) &) (1)
(22) 0, =0n8a 6" F 0086 + 02887 + 0penr(6,V87 + £,76 V) 4

(Ty) (L) (L
+ o660 — ePe)

where

(23a) ©01=01,>

(P-Py2 2PP
@30 e=F" [0” 0 Fipr 2 (P piy: (@n n) — Fpapn T(p.pyp Qn")],

p2
(23¢) 0= (P Pl)z " pipie [or, — 0z,],

1__ P-P
(23d) = [peprz_ (P pryiRe Ot + pepri_ (P-P'): (er,—e02,) ,

1
(23e) @5 = [Fz'plx :—(P..Pl)g]_g 0rzt-).

The requirement. of scaling for these new structure funetions in the gencralized
Bjorken limit is simply (35)

i 1
(24) Gim, g, = g Faw, ), a="T,, T, L TI*

and by explicit calculation, we find for both ¢ and =° production that

. 1 1

(26a) A, On, = o ng* o@—1) 8((1 —w)(1 + aw)) ,
. 1 1

(26b) G!'I‘.HII". Qr, = 62' ng* aT(;-.—l_) (1 —w)(1 + aw)) ,

(250) Jdim, e =0, i=L, TL*,

while for = production we have (%)

(26a)  lim or, = 4;;':’2[ ‘i + 4 (53 + m’) (1 - (52-’)_1)]

6((1—w)(1+aw>—%),
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: 4 2
(260)  Mlim, er, = %f— 5= 0 ((1 — o)1 + aw)— %‘—) ,

) dmgt 2 :
(26¢) G'IE%L 0z = ? o(w—1) 7% é ((1 — o)1+ aw)— %‘,) ’

(264) glxi:.n!}l. Q) = — 4332 (20— 3) V;?; l/ %’g + w?d ((1 —o)(ew +1)— %—z) ’

(26¢) lim, @pe1=0.

From eqs. (25) and (26) we see that our original conclusions regarding scaling
in the generalized Bjorken limits remain unchanged, and we conclude that for
n+ electroproduction computed in lowest-order perturbation theory the genera-
lized Bjorken limit does not lead to scaling behavior.

4. — Discussion.

The loss of scaling invariance in the functions g, and g, (or g, and @)
for the case of =+ production can be traced directly to the term in the production
amplitude corresponding to the second diagram of Fig. 2 ¢) in which the virtual
photon interacts directly with the w+. This diagram, which corresponds kinema-
tically to replacing the %-channel proton poles of the ¢ and =n° production am-
plitudes by a ¢-channel =+ pole, cannot be argued away. Its presence is dictated
by the general requirement of gauge invariance, which requires that the virtual
photon interact with every charged particle which participates with the overall
process. The origin of this difficulty does not actually stem from lowest-order
perturbation theory; it is independent of perturbation theory. The models we
considered are formally scale invariant if all masses are put to zero. Difficulties
only arise if the theory is then singular, which is well known to be the case for
diagrams with closed loops (*?). However the present difficulty is due to another
type of singularity, namely the g,, has poles which touch the physical region
if the masses are zero:

a b, ¢,
(27) g,,,=-?'"+-—;—+%+d,,,,
where (2)

s=(p+q?2, t=(p—q?, u=(—>p).

(®) A. I. VainsaTeEIN and B. L. IorFe: Zurn. Eksp. Teor. Fiz., Pisma Redakt.,
6, 917 (1967), English translation: JETP Lett., 6, 341 (1967); S. ApLEr and W.
K. TuNG: Phys. Rev. Letl., 22, 978 (1969); R. JACKIW and G. PREPARATA: Phys. Rev.
Lett., 22, 975 (1969).

(°) SHAU-JIN CHANG and P. M. FIsHBANE: Phys. Rev. Lett., 24, 847 (1970).
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8,t and u are related to », % and x in the following way:

8§ =M*—Q*4 2v,
(28) t =m*—Q3—2v,,
u=m2+4 M2—2x.

These singularities in g, forced us to retain mass terms which break scale
invariances as 8 = 8,,. (The problem in eqs. (19) and (26) are virtually the
same; in (26) the singularity can be avoided by retaining mass terms, and (19)
can be written in a scale-invariant but singular form.)

Trouble resulted from these singularities because we were taking the gener-
alized Bjorken limit which is characterized by

2y *®

o=

v’

which implies (in the limit) a factor J(— st/Q*— pj) and gives the problem
when p} is finite. Thus this particular generalized Bjorken limit is not one in
which scale invariance can sensib'y be expected. But the ordinary Bjorken
limit may hold, as KOGERLER and MURADYAN () have proposed.

The ordinary Bjorken limit is defined as

vy, @Y —¥, x—>00,

(29) 2y v ®
0= fixed , ;‘ = fixed , - fixed ,

and following ref. (3) we define besides the dimensionless variables w and «
(egs. (16)) a third one

(30) B=1+2%

wn
Now eqs. (17) take the following form

(31a) ljmve, = Fy(w, , §)

(31b) limv2e,=F, (0,0, f), a=2,..,5,

with all the F; dimensionless functions of w, « and . We now evaluate again
the left-hand side of eqs. (31) using egs. (8)-(10) and we indeed find that now
all structure functions scale, in particular the structure functions »%g, and »?p,
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for the = case, eq. (19):

N dng*w . B +1
(32) hnl}w 0s= o) + aw) 0 ((w 1)1 + aw) — aw —— ) 5

. ng? w? B+1
(33) 111;}_11 Y20, = @—1)0 T a0) 0 ((w—l)(1+ oaw) — aw 5 ) .

Furthermore we have also checked that the structure functions of K6GERLER
and MURADYAN g,, a=T,, T,, L,, TL* assume their proposed scale-invariant
form in the ordinary Bjorken limit. From egs. (32) and (33) we find that only
in the limit §=—1, which corresponds to the generalized Bjorken limit, do
we again have trouble. This was to be expected.

Further, due to this pole at §=—1, we expect that the functions g, and
¢, dominate the other ones. However this has to be discussed in more detail
and beyond lowest-order perturbation theory.

The most serious consequence of the breakdown of scaling in lowest-order
perturbation theory is that it rules out the possibility of describing a semi-
inclusive process by a simple parton model which will lead to scaling behavior
in the generalized Bjorken Wimit. The parton model consists essentially of taking
an incoherent sum of lowest-order perturbation theory amplitudes, and its
ability to predict scaling in the ordinary Bjorken limit rests upon the scaling
invariance of the lowest-order amplitudes. In the present context, a straight-
forward application of the parton model would produce an incoherent sum of
nonscaling invariant terms, and it is exceedingly difficult to envision a mechanism
which would cause this sum to exhibit a scaling behavior possessed by none
of its terms.

We should also point out that the parton model faces a serious technical
difficulty when applied to our processes. It is easy to see from eqs. (18), (19),
(25) and (26) that in the generalized Bjorken limit and in the ordinary Bjorken
limit some of the structure functions are more singular than a J-function at
the point w =1, <.e. they have the behavior

olw—1)
wo—1 "

(34) olw)~

In order to construct the parton model sum, the standard procedure is to define
the total structure function to be

o*(w) = [{@)olzw) dz,
(35) '
Jtaraz=1,

and it is obvious from eq. (34) that the integral in eq. (35) does not exist. Hence,
a more sophisticated procedure for performing the incoherent sum must be



BREAKDOWN OF SCALING INVARIANCE ETC. 305

developed if a parton model of semi-inclusive processes is to be constructed.

Concerning the claims of ref. (*) we want to point out the following two
differences in comparigson with our approach:

Firstly, a spatial cut-off is introduced. (This assures that the singularities
of p, stay away from the physical region.)

Secondly, an integration over the azimuthal angle is performed. Therefore
their structure functions ¥, are not easily comparable with our g, because the
integral is not at all trivial. (We have tried it but did not succeed.)

Therefore whether these two differences really assure that the generalized
Bjorken limit exists, we do not know. But in view of our findings, namely
that the generalized Bjorken limit breaks down due to singularities which move
into the physical region, we remain doubtful concerning the results of ref. (4).

On the other hand we believe that the ordinary Bjorken limit may exist
for semi-inclusive processes and may lead to scaling behavior in this case also (1°).
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® RIASSUNTO (")

Si esaminano le sezioni d'urto per 'clettroproduzione del mesone secondo duc modelli
di teoria di campo. Si trova che per I'interazione di mesoniscalari coi nucleoni le funzioni
di struttura scalano nel limite di Bjorken generalizzato, ma che nel caso di un’intera-
zione indipendente dalla carica mesone pseudoscalare-nucleonc il fenomeno non si
verifica sempre. Si cerca di spiegare I'origine di questa assenza ¢ il suo significato per i
modelli a partond dello scattering altameute anclastico clettrone-adrone.

(*) Traduzione a cura della Redazione.

HapyineAue HMHBAPHAHTHOCTH DOAOGHS B o0000wemHoM mnpenene bBohépkeEa s TeopHEH
BO3MYILICHHIA,

Pesiome (*). — Mur uccneqyeM nonepedHble ceyeHus 3ne1c'rpopox<neuun ME30HOB B OBYX
MOZeNnsAX Teopuu nons. MBbl HaxomuM, YTO ANA B3AUMOACHCTBHSA HEHTPANBLHBLIX CKa-
JNAPHBIX ME30OHOB C HYKIIOHAMH CTPYKTYpHEle GyHKUHH 0OHApyxHBalOT nonobue B 0606-
wennom npepene BoépkeHa. Ho nmonobue we Bcerna MMeer MeCTO IS Clydas 3apsfi0BO-
HE3aBHCHMOTO B3aHMOEHCTBHS IICEBAOCKANAPHBIX ME30HOB C HYKIIOHAMH. MEI 06BscHIEM
MOPOMCXOXIOEHHE 3TOr0 HapyLIEHHS W €ro 3Ha4YeHue IS MoJeliell INTyGOKO Heynpyroro
3MIEKTPOH-3APOHHOTO PACCESHMA.

(*) Hepesedero pedaxyueil.
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