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Summary. — In two-dimensional spinor electrodynamics with non-
vanishing fermion mass it is proved—using tesults of Brandt—that
o (=, 1), I1°(y> )] = + (i/n)egd,8(x —y), where j,'(k) is the exact un-
renormalized electromagnetic current. Implications for the exact solu-
tion of the vacuum polarization are discussed.

1. — Introduction.

Since THIRRING (), in 1957, found an exact solution for the Fermi interac-
tion of a zero-mass Dirac field in two-dimensional space time, many people (*)
have been interested in this field-theoretical model. Also two-dimensional
electrodynamics with vanishing fermion mass, first considered by BIALyNICKI-
BIrULA (*) and GLASER and JAKRIO (4), and solved explicitly in terms of Green’s
functions by SOHEWINGER, BROWN, THIRRING and WEsS (%), attracted many

(°) Partly based on a seminar talk given at the University of Karlsruhe in
November 1968.

() W. THIRRING: Ann. of Phys., 3, 91 (1958).

(%) See: A. WiecHTMAN: in Cargése Lectures in Theoretical Physics 196411, edited
by M. Levy (New York, 1967).

(3) 1. B1ALYNICKI-BIRULA: Nuovo Oimento, 10, 1150 (1958).

(4) V. GLASER and B. JAck816: Nuovo Cimento, 11, 877 (1959).

(%) J. SCEWINGER: Lectures, Seminar Trieste 1962 (IAEA, 1963); Phys. Rev., 128,
2425 (1962); L. S. BRowN: Nuovo Oimento, 29, 617 (1963); C. SOMMERFIELD: Ann.
of Phys., 26, 1 (1963); W. THIRRING and J. WESS: 4nn. Phys., 27, 331 (1964); Further
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676 P. L. F. HABERLER

field theorists. A large number of solutions was found, which led to quite a
a confused situation. This only reflected the fact that, in spite of the trivial
physical content of these models, a consistent formulation of these models
meets all the big difficulties of ‘a four-dimensional relativistic field theory.
Therefore it soon became clear that these models are excellent laboratories
to study questions such as the definition of the current, gauge invariance,
field operators at the same space-time point, etc., and existence of a unique
vacuum state (Goldstone theorem). One can also test the assumptions of cur-
rent algebras (¢) and related theories (7).

In spite of all these very important successes, these models have the draw-
back of giving rise to a trivial S-matrix. To understand the complicated dy-
namical mechanism of particle physics, we need exact solutions of nontrivial
field theories.

It is therefore worth-while to study nontrivial extensions of the above-
mentioned models. The most obvious generalization, in our case, is to give a
nonzero mass to the fermion. The Federbush (3) model describing the theory
of the Fermi interaction 24j,,6j,, between two spinors of masses m; and ms,,
respectively, is such an important generalization. It can be solved exactly
and gives an S-matrix different from one.

The more difficult problem—the Thirring model with nonzero fermion
mass—was first successfully attacked by BEREZIN (!). He was able to derive
an exact solution in the so-called pseudoparticle space, but transformation
to the physical-particle space remained a not properly solved problem. Other
approaches (°°) did not get further than deriving perturbation results.

Because of these enormous difficulties, GLimM, HEpr, JAFFE and WIGHT-

literature up to 1969: C. 8. Lam: Nuovo Cimento, 34, 637 (1964); H. Friep: Brown
University Conference (1965); J. Tarsk1: Journ. Math. Phys., 5, 1713 (1964); H. FRIED:
Nucl. Phys., 15, 691 (1966); J. TARSKI and D. DuBIN: Ann. of Phys., 43, 263 (1967);
G. VELO: Nuovo Cimento, 52 A, 1028 (1967); L. ZASTAVENEO: Dubna preprint P2-3113
(1967); M. K. VorLrov: Dubna preprint E2-3266, P2-3270 (1967); F. SCHWABL,
W. THIRRING and J. WEss: Ann. of Phys., 44, 200 (1967); H. RECHENBERG: Disserta-
tion (1968); preprint (1969).

(¢) C. R. HAGEN: Nuovo Oimento, 51 B, 169 (1967); 51 A, 1033 (1967); C. R. HAGEN
and G. GURALNIE: N.Y.0.-2262, T.A.-171 preprint (1968); C. R. HaGEN: U.R.-876-246
preprint (1968).

(*) R. A. CoremaN and J. W. MOFFAT: Phys. Rev., 159, 1306 (1967); C. G. CALLAN,
R. F. DasreN and D. H. Sgarr: Phys. Rev., 165, 1883 (1968); S. Coreman, D. GRrOSS
and R. Jacgxw: Harvard preprint (1969).

(¢) T. BErREZIN and V. SusEKO: Sov. Phys. JETP, 21, 5 (1965); Zurn. Eksp. Teor.
Fiz., 48, 1293 (1965).

(®) P. L. . HABERLER: Acta Phys. Austriaca, 25, 350 (1967).

(*°) I. B1ALYNICKI-BIRULA: Proceedings of Seminar on Unified Theories of Ele-
mentary Particles, URPA-11 (1963); I'. VERBEURLE: Nuovo (Oimento, 42 A, 269 (1966).
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MAN (11), and others, have started to attack the problem ab initio by defining
the field theory properly, i.e. by introducing a box cut- off and an ultra-violet
cut-off. They were able to prove important things such as the self-adjointness
of the Hamilton operator for the ¢* theory and the Yukawa theory in two-
dimensional space time (1) (some important results were also obtained in three-
dimensional space time) and, more recently, the existence of Heisenberg picture
fields and their vacuum expectation values () (the latter ones for a general
class of cut-off model fields). The most recent paper even presents an existence
proof for the @* theory in two dimensions without cut-offs (13).

In this paper we would like to attack the problem from a somewhat dif-
ferent angle. Following the interesting works of ZIMMERMANN (14), WILSON (%)
and BRANDT (*¢), we construct the exact current operator in quantum electro-
dynamies, taking carefully into account all the subtleties connected with two
operators at the same space-time point, gauge invariance and the equal-time
limit.

In Sect. 2 we review the main assumptions and the results of WiLson (%)
and BrANDT (1¢-17), In Sect. 8, we derive the exact expression for the current
operator and we calculate the equal-time limits and discuss briefly the impli-
cations of our main result:

(1.1) (%, 1), 50y, 0] =+~ sid(x— ),

where the index «un» means unrenormalized, and e, is the unrenormalized

charge.
We give, for illustration, some applications in the Appendices.

2. — Review (18) of the work of Wilson and Brandt.

Wilson’s (%-1¢) proposal amounts to the following. Any product x(z)-
*%(®1) ... xa(®,) of local field operators has, for all #, near @, an expansion of

(1) For an extensive review, see A. WIGHTMAN: Proceedings at the 1968 Rochester
Oonference in Vienna; K. Herp: Kiev preprint (1968); J. L. CHALLIFOUR: Journ.
Math. Phys., 9, 1137 (1968); K. HErp: Bures preprint (1968); I thank Prof. K. HErP
for sending me his work prior to publication.

(*2) A. JaFFE, O. E. Lanrorp III and A. S. WicETMAN: E.T.H. preprint (1968).

(13) A. JarFE and J. GriMm: Courant Institute preprints (1968, 1969); I thank
Prof. A. JAFFE and Prof. J. Grimum for sending me their preprints.

(%) W. ZiMMERMANN: Nuovo Oimento, 10, 597 (1958).

(*%) K. WiLson: unpublished Cornell Report; to be published in Phys. Rev.; I thank
Prof. WizsoN for sending me his work.

() R. BranDT: Ann. of Phys., 44, 221 (1967), and UMD 646.

(*?) R. BraNDT: Ann. of Phys., 52, 122 (1969), and UMD 673; Phys. Rev., 166,

1796 (1968).
(18) For clarity we present a quite detailed review. See also: R. BRANDT: UMD 910.
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tho form

(2.1) 1(@) oo 10(@a) = 3 B2, 34 .., ,) ¥5(®)

=1

plus terms which vanish as #,— @, and the expansion is valid in the weak
sense: one must sandwich the product yx(z) ... x(x.) between fixed final and
initial states. The x;’s are also local operators. The complete expansion in gen-
eral involves an infinite number of local fields y, but to any finite order in
@—x, only a finite number of fields contribute. The dimension of y, is less
than the dimension of x(2), ..., x»(®@,) and the FE,/s (which are matrices in
the internal variables) are distributions in # — #;, with dimensions

(2.2) dy= [dim (x(2) ... xna(®a)) — dim x;]
and singularities

2.3) B,= (z—z)™%.

This is the most important assumption and it is taken from the work of KASTRUP
and MAoK (*?), who assert that scale invariance is the most crucial broken sym-
metry. The importance of scale invariance for the analysis of short-distance
behaviour is apparent in the power counting arguments of DYSON, and in the
relation between the renormalizability of an interaction and its dimension (3%).

Starting from these proposals, BRANDT (6-17) was able to derive a renormal-
ized relativistic perturbation theory from finite local field equations for the
neutral pseudoscalar meson theory and for spinor electrodynamics. For the
latter, we present in the following a brief review where the main results of
BraAnDT (*7) are translated into two-dimensional space-time (2°).

The local formulation of spinor electrodynamics is based on the field
equations (*):

(2.4) (i(y-3) —m) plo) = f(@) = lim f(=, 7),
(2.5) 0 4,(0) = (o) = im j(@; &),

with the subsidiary condition

A gy =0

(**) G. Mack: Nucl. Phys., B 5, 499 (1968), and roferences cited therein.
() P. L. F. HABERLER: unpublished results.
(21) We use the metric p*=p;—p3 With gyw=—gn=1. TFor further dofinitions,

gee ref. (%).
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for physical states |p>. We shall therefore work within the usual Lorentz
gauge Gupta-Bleuler (2?) framework, but we shall not use the indefinite metric
explicitly.

The currents are defined in the following way;

2.6)  ju@; &) = exp [TH(@)y, p(@ + &) — O,,() — Oynl8) A”(2) —
- Oamk(g) A"k(w) S Odprkl(E)A"“(w) - C“,“(f) 17),(&?) 'lP:(a’) :] .

(The terms Cy,,.1(£)a™*(z), corresponding to the four-photon coupling, and
Croi - A A%:, Gy, 8 47 A*: corresponding to diagrams with three external
photon lines, which can be found in Brandt’s paper (*7), are left out, in anti-

cipation of the results of Sect. 3).
©@.7)  f(z,n) = exp [T(y-4)(@ + 1) p(@) — Di(n) p(@) — Dy, (1) *p(x) — Di(n)f(2)]

where T' means the time-ordered product.

For our purpose it is enough to study j,(#; &), since it contains all the neces-
sary information to derive eq. (1.1) Some remarks concerning f(z,n) will be
made in Appendix A.

AUl the parameters and field operators are understood to be renormalized.
The functions D,(n) and C.(§), which we refer to commonly as F;(£), have
singularities for £— 0, which compensate those of the local products, as
Tp(z)y,p(@+ &) for example, so that the limit £—0 exists in (2.6). The
operators occurring in (2.6) and (2.7) are all those in the theory with dimension
(in mass units) 1 and 4, respectively.

We have

dimy =4%, dime=1,
(2.8) dimd,=0, dim j, () = dim e + dim gy, p=2,
dimo, =1, dim §(x—x')=1, ete.
From (2.2) and (2.8), it therefore follows that
dim O%(¢) =1,  dim OY™(¢)=—1,
(2.9) dim 0*(f) =1,  dim C%¢)=0.
dim Ct"*(&) =0,

(**) 8. N. GuprA: Proc. Phys. Soc., 63, 681 (1950); K. BLEULER: Helv. Phys. Acta,
23, 567 (1950).
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Since the leading singularities in perturbation theory are mass independent
(following WirsoN and BRANDT), we find for E,(£) (**) from (2.3)

Clll ~§—1 ) Of'HNE ,

(2.10) O ~E1, Ch,~1,
G:'kN 1 ,

and

(2.11) P@)y, 9@ + )~

as £— 0, within logarithmic factors. That this is true in our case (it is not
an assumption), follows from the exact solution of the Thirring model for
vanishing fermion mass (2¢). The renormalized quantity 9(z)y,y(x+ £) has
exactly this behaviour. The generalized Wick products :%(x)p(r). must be
defined by similar expansions. Possible arbitrariness in defining such products
is just the usual arbitrariness of choosing basic vectors in a vector space and
corresponds to the usual renormalization invariance.

The functions E(£) can be essentially uniquely determined by imposing
the usnal renormalization conditions on the « primitively divergent» proper
part functions:

(2.12) I7,,(0) = I1,,(0) = I1,,(0) = 0,
(2.13) Zyp=m)=Z'(yp=m)=0,
(2.14) Ly(®y D)y peyegrom, pmyr = s
(2.15) 17,,,5(0,0,0,0)=0.

Here I7,, and X are the proper self-energy parts defined in terms of the photon
and electron Green functions D,, and G by

(2.16) D, (k) = D, (k) + D, II** D, (k) ,
(2.17) D}I"‘(k) = g”’/(k: e E ?:8) ’
(2.18) [y:p—m—2Z(p)]G(p)=1.

() We cannot put C4*A(§) equal to zero because it multiplies a function which
behaves like &1 for §—0. This is due to the fact that <0]4;*(z)4}*°(y)|0) =
= Guy D(@—Y) ~ Guy log (—y)* for z~y. The derivative of D(z—y) goes like (z—y)*
roughly speaking.

(2*) B. KLAIBER: Boulder Lectures, 1967 (New York, 1968), p. 141; This work
contains a beautiful oxposition and solution of all the consistency problems in the
Thirring model.
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I’, is the proper vertex part and II,s;s the proper photon-photon scattering
amplitude.

Conditions are imposed on the integral equations relating all the proper
functions of the theory. For example one finds (*°):

d2p
(2m)*

(2.19) IT*"(k)=—ie [try" X(p) " (p, k) G(p — K) + i C3"(p) —

— i 0P (D) kakp + 4 Clis IT33(K)] -

A calculation of I7,(k) to lowest order, taking into account all extra terms,
will be given in Appendix C, with

[ O(p) = +itey G(p)"(p,0)G(D) ,
(2.20) 05 (p) = —5 % & try* Gp) ["(p, K) 6P — F)lx-o
[ Ciy(p) =i try* 6(0) Hux(®, & 0)G(@)yrgmm »
(2.21) ‘
| Cilp) =ity Gip)=iT"(p),

where C{(p) was determined from the conditions

(2.22) 0440y =0,  <0[j*(@)[0) =0
anu
(2.23) <0|: Pu(@) p5(2):]0> = 0 .

H,,(k, p, p’) is the proper electron-electron scattering amplitude and y*,II,7= IT*.

Iteration of this infinite set of coupled integral equations yields perturba-
tion expansions (in terms of the renormalized charge ¢) for all the Green func-
tions of the theory. So the limits in (2.6) and (2.7) do exist (**) and yield the
correct finite local current operator (27:20),

The advantage of the above formalism is that it enables a direct impo-
sition of local gauge invariance. One can show that the requirement that the
field equations are invariant under the local gauge transformations:

(2.24) (@) — p(x) exp [—tex(2)] , A”(m) = 4,(@)+ 9,x(z) ,

is equivalent to the requirement that the theory satisfies all the generalized
Ward identities and divergence conditions like

(2.25) — €0"G(p) = G(p)[*(p, 0)G(p),
(2.26) —eD%(k) = iy*Dy(k) .
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Further, one can show that the theory determined by the normalizations
(2.11)-(2.14) satisfies these conditions. For later reference, we show here some
of these conditions:

(2.27) kI (k) =0,

(2.28) ko JT*P (ke By o)) = .=k JT=0,
(2.29) O (p) = — 16" J*(p) ,

(2.30) Cr=(p) = — 5 0°0°T*(p) + T (p),
(2:31) 05 (p) =5 FPTIp) + Cr(p),
where

(2.32) ke, Co%(p)=0, kKl C"*(p)=0.

We will see later that C¥** vanishes because of charge renormalization inva-
riance. C%**f will be specified in the next Section.

One can then easily convince oneself (*) that (2.27)-(2.32) are necessary,
as well as sufficient, in order that our functions satisfy the requirements of
gauge invariance. In the following we will show that we can specify the current
completely from the gauge invariance of the field equations, charge-conjugation
invariance and the usual equal-time commutation relations, without even spe-
cifying integral equations, as we have indicated above.

3. — Determination of the current.

Let us now see what are the necessary and sufficient conditions which the
currents j,(v) and f(z) must satisfy so that the field equations (2.4) and (2.5)
are invariant under the gauge transformation (2.24). It is easy to see that

{3.1) (@)~ j*(@)
{3.2) f(w) - exp [— dex(2)]f(x) + ¢(y*8,x(x) exp [—iea(x)] p(®)) -

Our task is now to derive the necessary and sufficient conditions which the
functions F,(¢) must satisfy so that (3.1) and (3.2) are satisfied.
If we apply (2.24) to (2.7), we just get

(3.3) ieD, () = Dy(€)y,, -

This is just the Fourier transform of (2.26), exactly what we wanted to get. In
Appendix A, it is shown that this Ward identity is identically fulfilled in lowest
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order. [We now turn to the electric current operator j,(2), the main object of
our interest.

We have to apply transformation (2.24) onto each term of eq. (2.6). The
first term @(z)y,p(@ + &) wil require the factor

(3.4)  exp [iela(x) —a(z+ §)]] = exp [—de[be’ + 3&Ee” 4 §EEL” + ..]] =
=1—1e(fa’) + O(&?)

where {a’'= £#0,a(), ete.
Notice that we truncated the expansion after the & term because we know
from (2.11) that %(z)y,y( + &) behaves like £~ so that

&2 p(e)y, v+ &) —0.

We are now ready to investigate the restrictions on the C; in (2.7) imposed
by the requirement that j,(#) be gauge invariant. We shall first determine the
the forms C; must have, in order that <0|dj,(»)|0) = 0 simply. As a basis for
the usual induction argument, we can assume that

(3.5) 0]0:Pu(@)py():[0> =0.
This is due to the fact that j, (@)= %, 9s9:.(#), so that invariance of
Ps9;:(z) implies invariance of j,(x) and vice versa.

Using (3.4), (3.5) and (2.6), we get (taking literally eq. (8.39) of ref. (*%),
to demonstrate that C;, 0,, Os really contribute to zero)

(3.6)  <0[87@)0> = elim {[— i (ea' + e+ 555«”’) -
— ot b b ) + 2 (b fac’)] §T4(8) — O (£) oy — (8 otn —
— O * (&) atyry — CF (&) oty 0tx — O%H(E) 0z 0y 00 — CL™™ (&) oty 02 oz;} .

Since (3.6) holds for arbitrary e(z), by requiring {0|dj*(x)|0> = 0, we obtain
the following conditions that the coefficients of the termse,, a,,, %,;;, «,«,, etc.,
vanish. Taking into account the total symmetry of «,, and «,,; we get

(3.7) 0y (€) =e&’J"(¢),
e

(3.8) o5(§) = 5 &) + ceMe)

3.9) C(E) =2 EEETE) + T,
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where

(3.10) 2,0, O E) =0, a,0,3, 00 E)=0,
o) ==L e,

3.11) o) = — T B,
o =L rpgg).

We remember that
(3.12) JH(E) = —i{P(@)y (@ + §)> = try* G(¢) .

Now from (2.10) and (2.11), we find (*?)

(3.13) CurE) = T,
(3.14) Curh(e) = e
(3.15) e =o,
(3.16) 0r*(§) =0,
(3.17) Or(E) =0,

where we have used the fact that |£2|J#(§)=0. We get the important result
that we do not need a renormalization of the photon-photon amplitude
(C¥¥(£)=0). In Appendix B we show this explicitly by calculating the lowest-
order contribution to this process. The fact that the three-photon vertex does
not give any contribution was expected, as we know from Furry’s theorem
that these graphs vanish identically.

{0|37*(2)|0> = 0 implies (3.13)-(3.17). Conversely, if the O/s bave the
form (3.13)-(3.17) then (0|dj*(x)|0) = 0.

Let us now compare (3.13)-(3.17) with egs. (2.27)-(2.32). We see that
they are just the Fourier transforms of each other and, using the extensive
arguments given by BRANDT, we see that eqs. (3.13)-(3.17) are the necessary
conditions for j,(@) to be gauge invariant, <.e. <0]0j*(2)|0>=0 is equivalent
to dj*(#) = 0. This equivalence requires use of the fact that {0|j*(z)|0>=0,
so that

(3.18) 01¢) =",

which is the Fourier transform of (2.21).
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We can get another useful relation if we transform the fields using (3.2),
(3.13)-(3.17) and é:¢(z)p(@): = 0:

(3.19) (@)Y  pla + £)& ~iJH ()€,

‘which we will need later.
We have now for j,(z; §) the following equation:

(8.20) ;&) = e[ TH(@)y, (@ + &) — i (E)[L —iel’ 4, (2)] —

— Topoal6) 47%(2) — T, 01(8) 47 (z) — br O4(&) (@) $(2):].
So C¥*(&), 04**(£) and O, have still to be determined. Following BRANDT (17),
we write (%)
(3.21) 06 A, pal0) = €693, F*(a) ,
(3.22) 0§ 4,,(@) = CE)EFH ).
To determine C%(¢) further, let us use explicitly invariance under charge
conjugation:
(3.23) CA*(z) 0= — A¥(z) ,
(3.24) Ci#(@) 0t =—j¥(z) .

From this we find, for C%(£)

(3.25) 00y, (£) O = — Op(—§) ,
therefore
(3.26) C(&) = Ky (82)y" + K2(£2) 64 &y + Ky (82) 8 .

Now since j,(2) is a covariant quantity, and since we will impose analyticity
properties of the perturbation theory on the Ci, i.e. excluding (*) terms like
7/E%, we find from (3.23) and from the fact that C¥ diverges only logarithmically

(3.27) Ois(8) = Ey(E%) Y0y

(25) We would like to remark that eq. (3.20) is manifestly gauge invariant, if we
at+é
use egs. (3.22), (3.28) and 1—1ef-4 = lexp [— iej'dn‘A(n)]: because one can truncate

the expansion after the first two terms in our ca.se Therefore also the Wick ordering
sign ; ; is trivial, contrary to the four-dimensional case.
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and since
(3.28) @)=yl P, (@) (@), 0L, Pi(m)y,(z) = K, (£2) j*(x) -
One can now show (*7), using (3.25), that
(3.29) Cif(w; §)0'=—j"(@@ - &—&) +
+ terms which go to zero as & goes to zero.
With

(3.30)  jH(@+ &i—E&) = eP(w + £)y* p(@) + eJ*(i— et A(m + £)) —
—eC0(£2)0, I (z + &) — Ky (£%) ¥ (x + £),

0#* does not contribute any more because of (3.23), (3.24):

(3.31) C3(8)6, F™* €1 = — T(£") 6, I = T(e)(—&,) P,

which contradicts (3.16) and therefore (&%) = 0. Now since

(3.32) (@) = lim j*(z + &—¢§)

one can construct a manifestly charge conjugation invariant form of j,():

(3.33)  jM(z; &) = }[/*(@; &) + (@ + &:—£)] + terms which—0 as £—>0,

(3.38) @i 6) =5 [F@y P+ O —y p@) o+ H— e THE &4 —
— e0(%)0, T — Ky () (@)
where

(@) =1im 7(; £) -

In the following we shall always use this current.
Applying gauge transformations on j*(z; £), we obtain a number of useful
relations, which will be of importance in the following:

(3.35) [P(@)y* p(@ + &) —y y(2) Pz + £)]E —eJ*(£)(§- 4)E=0.
From
Jim [#(a; &) —j*@ + £, —£)]1=0
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one finds (*?)

[ 3 [P@)y  p(@ + &) + y*p(@) fl@ + £)]1=1ied" (),
(3.36)

3 [p(@)y*p(@ 4 &) + Y p(@) Pz + £))EE=0.

These relations are needed for the derivation of the equal-time limit.

Now, only the determination of C(£%) and K,(£?) remains. To specify
these terms, we are going to use equal-time commutation relations, i.e. we
resort to Lagrangian field theory. Then it is not difficult to obtain C(£?) and
K,(£*) in terms of Z; and Z,, the usual charge and wave function renormalization
constants, respectively. We have just to compare our remormalized current
with the current that was given by KALLEN (2¢) and which involves Z, and Z,.
It is then very easy to read off C(£?) and K,(£?) in terms of these renormalization
constants. Thus we find that the current is completely specified by these
constants. Then we calculate [fo(x, t), j1(y, t)] and transform back to the un-
renormalized quantities. We will then see that the renormalization constants
drop out, and we arrive at (1.1).

Let us list the commutation relations we will need in the following (17.26.27).

(3.37) {:(®), Y@ V}p = {Ful@), Ppl@' N1 =10,
(3-38) {Ful@), vp@ V}yop =y, 27 S(x— '),

(3.39) [4,(@), pa(2));p =0,

(3.40) [4,(2), 4,(@')]=0,

(341)  [%Au@) 4@ = — 41257, — (£5" — 1) 900,01 6(x — ') ,
(3.42)  [00A,(®@), %l @)y =—(Z;* —1)(Guo0, + ,00,) S(x — ') .

(**) G. KALLEN: Helv. Phys. Acta, 25, 417 (1952).

(*") In view of all that one knows about the dimensional arguments, one might
wonder whether the equal-time commutation relations are compatible with our dimen-
sional assumptions. This is indeed the case because we havo

P(z) p(y) ~ (a; _y)_l ’ -A-p(m)-Av(y) ~(z— ?I)° ’ 'Ap(x) 'P(y) i ((8 . 3/)'* s
O Ar(@) Ar(y)~ (@ —Y), 0 A u(@) 04, (y)~ (x—y)2.

Now, remembering that dim (d(x—y))=1 and that leading singularities occur as
mass independent coefficients of local field operators, the equal-time comnmutation rela-
tions by locality must have the form

N
D Ej@) o o(x—y) .

n=0
If we compare this with (3.37)-(3.42) we see that this is indeed the case and we also
observe that no operator terms like A ,(x)d(x—y) can appear because of charge con-
gation invariance. Thus (3.37)-(3.42) are all the commutation relations we can have.
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Also we need the following spectral representation:
+ o
(3.48)  Gup(w—y) = i<0[{pal) a(¥)}|0> = f ds [6 (¢ — m) + o(x)] Sapl® — ¥, %)

(3.44) Zi'=1+ f dxo(x) ,

(3.45) Zil=1+ f d“’;(“) .

KALLEN (2¢) has given the following expression for the renormalized current:
. 6. .

(3.46)  j,(@) =5 [P(@); Yup(@)] + Z:'(1 — Z,) 0" (@) + (1 — Z57)ju() -

If we compare this with (3.34), then we see that, apart from the term —e*J ,(£)-
-(&-4), which ensures current conservation—as we have seen, we get exactly
the same expression. Therefore we identify

(3.47) Jim — eC(£*) = Z71(0)(1—Z,(0))
(3.48) lim—K,(§?)=1—2%;",

and we find, setting & =0, 7.c. using spacelike & only (because we do not
want to spoil the canonical formalism):

(3.49)  jo(w; £) = 5 [F@)yop(o+ &) =y pla)flo+ £)] +
+ Z7Y(1— 2)3" Fo, + (1— Z17") fo() .

Jo(£) vanishes, because, by covariance (11¢) J,(§) = J,(£*)¢,

(3.50)  fila; &) = 5 [F@)pv(@+ &) — rip(0)pla + ] —
— Ty ()EA) + Z7(1—Z)0 Fylo) + (1— ZYin(a)

To show that K,(£3) is really given by (3.48), we use (3.38) and the fact that ¢
is the physical charge corresponding to the validity of the relation

(3.51) [w(x,2), Go(y, 1)) = eyp(x,?)d(x—y) .
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Defining the charge operator by
(3.52) Q=|dyi(y,?)
and integrating (3.51) over y leads to

(3.53) [¥(x, 1), @]=ey(x, ),

a8 we wanted to show.
Now using (3.49) and

(3.54) [p(), ao-Ay(‘v’)]t-:' =0,
which one easily derives (*) and using also
OF, =—013°4'+ 9124°,
one obtains
Lm [p(@), 1°W, &)l.,.,, = 625" p(@)d(x — y) — €Ky (0) p() Sz —y) .

Now, requiring again that (3.51) gives (3.48) as a check, we are in a position
to calculate [j,(x, ?), jo(y, t)]. Using

(3_55) a'F”= —_ 3°3‘A°+ 024 —=— aoale+ 7"+ 3:.A1

and

(3.86) (L—2Z,)" Z7'[(— 2 0°4%(x) + 0124°(2)), (01 0°4°(y) — 012 4 (®))],,,,= O,
after bringing j(z), of eq. (3.55), over to the other side of (3.50). For (3.56)

we needed egs. (3.41) and (3.42).
As a next step we calculate

(3.57)  *Z,Z7TME)EAN®), (L — Z4)(— 83 A (Y)pyer, =
= — il — Z,) Z;* THE) £ Bi8(x — )

using (3.41).
Let us take into account now the following commutators (**+2?)
(3.58) [Ooy(@), Ao(@")];epy =0,
(3.59) [1(®), 41,0(@"))sp =0,
(3.60) [1(®); 4oo(@)]eyr =0,
(3.61) [o(@), 4y (@) ey =0 .

45 — Il Nuovo Cimento A,



690 P, L. F. HABERLER

We finally get

(3.62)  Hmlia; &), ey €Vher = — 7 2,25 [Bla) vl +8) + p(@) puF@+ -
+£,0,0(x — &) — ie2 Zy(1 — Z3) Z52J 1 £,0,8(x — ') .

Using now (3.36), we find

(3.63) - lim [x(®, £), jo(@', £))yor = — 163 2,277 £:0,7,(§) b(x — =) —

— 622, (L — Z3) 22, £,0,(x — &) = — 62 Z, B2 Ty (£) £, 0, 6(x — ) .
‘We have made here the mild assumption that we can calculate the various com-
mutation relations by interchanging the £— 0 limit with the equal-time limit,

which is justified if we compare with BRANDT (**). Let us now transform back
to the unrenormalized quantities. We have

A,=AnZ3,  jr=2Z,,
(3.64) e =Ze,, i, =27}
Y _Zx P
Remembering that

(8.65) & J,(8) -—J-dx(é(x—m)-t-o(x)) try, 87°(&) b= —Z1 trp, 8™ (£) b1 = — Zﬂ ,

where we used (°)

S!ree(g) - _;;z;; — __Z;_fl ;

we get
lenn(m)77o (¥)Jeymso= + 1632y Zy 752 77 0,0 (x — ),

and therefore (23)

(3.66) [ (@), 5" @)= + = 0:0(x— ) -

28) Dr. D. Gross has pointed out to me that since from (%) =0 and 3,75(x)=
(®8) e
= — 2miPys Y, j5(@)=0"o(z) follows (?), and since jo=—j;= 6‘6, l=—ji= 8%:

o o 1 ']
[1%(@), '5(2' ey = 9 [%0(a), 0(@" )y = + — D'z —2),
80 that ¢(z) has to be a canonical field. This is here only true for the free field case (e),

because we used the free field equations. In a subsequent paper it will be shown that
it holds for the interacting case also.
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So we see that we have obtained just the same result as for the case of vanishing
fermion mass () or for the case of lowest-order perturbation calculation. (°).
That this result must be trie is shown by the following simple argument. Since
ju(x) is gauge invariant, as we have shown, the commutator [4,(2), j1(%)].,-,,
has to be also gauge invariant. This implies that it cannot depend on Z,, which
is a gauge-variant quantity and therefore has to cancel out, as we have seen.
Our commutator could depend on Z,. But this is also not possible as Z,
vanishes for m going to zero (remember that in the Schwinger model (*) ne
photons exist, we have instead a massive stable vector boson). Since we
know that [jo(2), j1(¥)],,.,, exists for m—0 (this iz just the exact result (°)
in this case), we immediately see that only the result (3.66) can arise.

The surprising result we obtained was that there are no operator Schwinger
terms and no further terms, even for m 7£0. All the amplitudes which start
at higher order as the three-photon vertex, etc., have no Schwinger term;
they are gauge invariant without introducing counter terms. This suggests
that the solution of this model must be quite simple and one ghould be able
to solve it exactly.

From our basic result (3.66), we can now derive an interesting sum rule.
We know that the vacuum polarization tensor has the following spectral
representation (%°):
da®o™(a?)

at—g?

(3.67) IT(g) = (4% — 9u )

Since, on the other hand,

1
.8 I3a—o) = OTE@REE)0 = 55 | Sxpliiglo— T2

We can use the Johnson-Low-Bjorken (*°) argument to relate the spectral in-
tegral for II7}(q) to the equal-time commutator. We find

(3.69) Schwinger term = f da® o™ (a®)(guogro— Gu») -
0
Now using (3.66) and (3.68), we get

g 2
(3.70) f dat g™(a?) = :-:- .
0

(2%) See: G. KALLEN: Handbuch der Physik, vol. 5/1 (1958), for example.
(®°) K. JOENSON: Nucl. Phys., 25, 431 (1961); K. JouNsoN and F. Low: Suppl.
Progr. Theor. Phys., 3T, 88, 74 (1966); J. BJORKEN: Phys. Rev., 148, 1467 (1966).
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This is our main result. It is an exact sum rule. Let us split

(3'71) gun(aS) — e(o)nn(aS) + Qnmg(aZ)
and using (°)
o)unf 2y 2o d 4 _4_@
0 (a)_2am.,/(yzaV B
we find
(3.72) f@“m‘(a') da*=0.

From ref. (°), one can also convince oneself that the fourth-order correction
to the Schwinger term does indeed vanish. The same is true for the gixth-order
contribution (). Thus the result (3.72) is verified in perturbation theory
through sixth order. Unfortunately, although (3.17) is an exact result, we
cannot conclude (%) that p™wst(a®) is identically zero, as we would then have
an exact result for the vacuum polarization tensor. It would be enough to
know that "®(a2) > g"™t(a?), but up to now we have not succeeded in showing
this. Nevertheless (3.72) suggests that II;;(g) must have a very simple form.

One can also try to use dimensional arguments and the exact result for
m,=0, to get more information on p™wt(a’), but it is very easy (") to find
counterexamples. We therefore have to solve the basic equations, especially
the fermion Green function in an external electromagnetic field (31) to get
further information.

4. — Conclusions.

We have proved, following the interesting work of BrAnpT, that gauge
invariance, equal-time commutation relations and charge-conjugation in-
variance, specify the current in electrodynamics completely in two-dimen-
sional space time. Using this, we were able to derive an exact result for the
Schwinger term, which gave rise to an exact sum rule for the vacuum polarization
tensor. This sum rule gives a strong indication that this model can be solved
explicitly and that it is therefore worth-while to study it. Since it has probably

() I thank Prof. S. CoLEMAN for stressing this point to me.
(°*) Dr. R. JAckrw provided these counterexamples and I thank him very much

for his critical interest.
(®!) P. L. F. HARBERLER: to be published.
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a nontrivial S-mafrix () and interesting (2?) physical properties, we believe
that the exact solution of this model also gives us a clue for solving the dynamical
problem in four-dimensional space time.
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APPENDIX A

Proof that the Ward identity is already valid in lowest order.

(A.1) Pp(P: 0) = 6,0,G*(p) or Ayp,p)= €,0"2(p) ,
A2 Zp) = M e ,
(A.2) (») pe (,,‘..;’;)' V(a*—mi— pl)* — dmd 13 (a® — p?)
u ______'moe: I P*—mo— o 1 p’—mg—yg—ﬁ_}_
Fop=—="2 {[(p’—— my— ey — 4l ® pr—my— s .
(A.3) 2 }
T o @ — )’
Vo= [l = ms— iyt — i}

It is easy to see that €,(0/0p,)Z(p) is just given by (A.3). (mg, 4, and e, are
the unrenormalized quantities.)

It therefore follows that D3(n) and D,(n) are actually not needed because
the Ward identity is already fulfilled.

(32) P. L. F. HARBERLER and I. SAAVEDRA: Nuovo Cimento, 49 A, 194 (1967);
P. L. F. HABERLER: Nuovo Oimento, 47 A, 929 (1967).
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APPENDIX B

The photon amplitude is given by
(B.1) Hpvla(kx kokskg) = 2Tpn\6(kl koley Iep) 4 2T yyaa(kx kskiks) -+ 2T pzm(kl kyks AP

where, to lowest order, one finds

et i ] 1
B.2) Tope=—-—2 sz fr v .
(B.2) i (27)? ? y"y-p—mo" yp— (yk)y—m,

X 1 . 1
YD — pk)e— pEk)s—my” pp+ (yk)—mo’

4

with k&, + %o+ %+ k= 0.
The first thing we want to show is that 17,,1,(0,0,0,0)=0. We find

4 3

0 m [ 4 v v
IT,,34(0, 0, 0,0) = =2 d*p [y"y"y"y* + ¥*9*¥*° + "9 y"°1-

(2m)?
) 2 4 3mg
(p*—mg)* * (p*—mg)| "
Performing the integration gives exactly zero.
In the same way, using the Ward identity, (A.1), one shows that

IT4)36(0, Kogy Koy o) = oo = Ip20(Ty, Keqy %3, 0) =0
and also that of course

KT 30Ty JoaTeg og) = ... = kel uyao(los leakaFo) = O .
Here one uses

1 1 1 1
B.3 -k = — +
(8.3) V'p—moy y'p—yk—my yp—my yp—yk—my

and then redefining the integration variable, one is allowed to shift the inte-
gration variable because all integrals are convergent in two-dimensional space-
time, and one finds that the terms cancel pairwise. We also found the some-
what surprising result that II,,a.(kkoksk) =0 for ky=1k, and ky=1FK,, i.e. if
it depends only on one vector k,, then I7,,3,(k) vanishes identically. For
ITy20(ky ko kg k) to vanish as a whole, [fi*(2),7**]=~ 0 number, which is not
the case (%) here. In any case Il,.(k ksksk,) must have a very simple form
also and it does not contribute to the Schwinger term.

(%) This is duc to a theorem of BorcmEmrS and ROBINSON; V. GLASER and
H. EpsTEIN: private communication.
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ArPrENDIX O

In this last Appendix, we want to caleulate {0]j,(#)|0> up to second order
in ¢,. We have (%)

(C.1) 0ju(@)|0> = — ¢ triy, 8(x, @, A) = — &

cts

. {tl‘ iy 11_{2 [So(f” —a,') + 3ofdy' Solz—13y")y» S(y', 2’y 4) A'(y')] exp [ieofdfy A’]} .

In lowest order we have
(C.2) {0]ju()|0> = — e, try, }.1_13 .
zte
- [So (—2') + eoJ‘dy’ So(@ —y")yy So(y' — ) A’(y’)] -exp [ieo ds, A’] ;

we always have ¢ spacelike, and take the symmetrical limit. Tf we develop
in small &, we get

{0[ju(®)]0) = — i, try, lim -

. [So (z—2') + & f dy' So(@ —y')yy So(y' — @) A*(y') + i€ Solw — m')fdf, A'] .

The first vanighes by symmetry, because Sy(e) ~1/e. Therefore we also need
only the first term of the line integral and thus we get

Oli@10) = —ieu ey, [ 20 St —9' ) Sy~ ) 141 + ieoso(s)e-A] ,

where (°)
€
So(e) = — 2)’%82 ’ try,y-e=2s,,
yree A €y £ 6" A A
w.,tr(—wo) 2mz=‘";,qisa_=——[5mso+5ms; e .
ceA 7 )
ie, tr(— 16,) Vzn =3 (G — 0,4008,0) A’ (%) =

———9(gy. Ou0byo) | Ay Oz —y") A7(Y') -

(3) K. JonNsoN: Lectures on Particles and Field Theory, vol. 2, Brandeis Lec-
tures, 1964, oditcd by S. DEeskr and K. Forp (Englewood Cliffs., N. J., 1966).
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Now we find (°)

degmg
7

r ds I} ! . vy —
UsTs_ﬁ-——_ mfdy{(a,,a,—g,,.!:l) Az —y', 8)—0(w—y )(9 40950 gﬂ’)}A (y )J

3
— & (g Suaben) [ 24800 — 9 47) =

_dami[ [ s f , S
R LL'\/m 4y’ 0u,— 9w dslo—y', ) LW 5
My

<0[ju(=)[0> =

which is the desired result. The reason for deriving this in such detail is partly
because one finds great confusion on this point in the literature. We also
wanted to check that only spacelike & are needed.

RIASSUNTO (*)

Si dimostra, usando i risultati di Brandt, che nell’elettrodinamica spinoriale bidi-
mensionale, con la massa del fermione che non si annulla, [j5"(x, ), 1 (y, 8)]=
=— (i/n) €3 0, 8(x— y), dove ju (k) & Pesatta corrente elettromagnetioa non rinormalizzata.
Si discutono le implicazioni per la soluzione esatta della polarizzazione del vuoto.

(*) Traduzione a cura della Redazione.

Tounrnf pe3yJbTAT B XBYMEPHOl KBAHTOBOH 3JIEKTPOJUHAMEKE
C HeHyJieBOH Maccoit ¢gepMuona,

Pesiome (*). — Ucnoneays pe3ynsTaThl BpaHnra, B AByMepHOH COMHOPHONA 31NeKTpO-
JuHAMEKEe C He ofpamaromieiicda B Hyiab Maccod ¢epMHEOHA MOKA3EIBAECTCH, Y9TO
[1m=(x, 1), 7=y, D] = + (i/n)e2d,6(x— ¥), TAe ja~(k) OpepcTaBnseT TOYHBIY HenepeHOpME-
POBAHHEIY 3/IEKTPOMATHATHLIL TOK. OQOCYXIAtOTCS NMPEAMEHEHHUS I TOYHOrO PEImCHHS
HOJIApHA3alEY BaKyyMa.

(*) Hepesedeno pedaxyueil,



